Comparison of trajectory generation methods for a human-robot interface based on motion tracking in the Int2Bot
نویسندگان
چکیده
The acceptance of artificial devices like prostheses or other wearable robots requires their integration into the body schemas of the users. Different factors induce, influence and support the integration and acceptance of the device that substitutes or augments a part of the body. Previous studies have shown that the inducing and maintaining factors are visual, tactile and proprioceptive informations as well as their multisensory integration. This paper describes the vision-based part of the human-robot interface in the IntBot, which is a robot for the investigation of lower limb body schema integration during postural movements. The psychological approach and the technical setup of the robot, which is designed to imitate postural movements in the sagittal plane to imitate the human subject while performing squats, are outlined. To realize the imitation, an RGB-D sensor, in form of a Microsoft Kinect, is used to capture the subjects motions without contact and thereby avoid disturbances of body schema integration. For generation of the desired joint trajectories to be tracked by the control algorithm, different methods like an extended Kalman filter, inverse kinematics, an inverse kinematics algorithm using Jacobian transpose and approaches based on kinematic assumptions are presented, evaluated and compared based on human data. Benchmarking the results with data acquired using a professional motion capturing system shows that best overall joint angle estimations are achieved with the extended Kalman filter. Finally, the practical implementation within the robot is presented and the tracking behavior using the trajectories generated with the extended Kalman filter are analyzed.
منابع مشابه
Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملTrajectory Tracking Weeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer
The connection of the tractor to the inactive trailer or motor vehicle causes a motion control problem when turning in the screw, forward or backward movements and high speeds. This is due to the inactive trailer being controlled by the tracking using a physical link that is not affected by the movement. Trailers usually take tracks under these conditions. This phenomenon is called Jack Knife. ...
متن کاملمدلسازی دینامیکی و کنترل ربات فضایی متصل به تتر
In present study, dynamic modeling and control of a tethered space robot system in trajectory tracking of its end effector is investigated. Considering variation of the tether length in the model, dynamics of the system is modeled using Lagrange’s method. Librational motion of the tether is controlled by adjusting the tether length similar to conventional manipulators,control of the robot...
متن کاملTrajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)
In recent years, soft computing methods, like fuzzy logic and neural networks have been presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کامل